Determinan dengan Ekspansi Kofaktor
Terbagi tiga jenis yaitu:
- Dengan Minor dan Kofaktor
- Dengan Ekspansi Kofaktor Pada Baris Pertama
- Dengan Ekspansi Kofaktor Pada Kolom Pertama
Determinan dengan Minor dan kofaktor
-
- A = tentukan determinan A
Pertama buat minor dari a11
-
- M11 = = detM = a22a33 - a23a32
Kemudian kofaktor dari a11 adalah
-
- c11 = (-1)1+1M11 = (-1)1+1a22a33 - a23a32
kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matriks di bawah ini
Begitu juga dengan minor dari a32
-
- M32 = = detM = a11a23 - a13a21
Maka kofaktor dari a32 adalah
-
- c32 = (-1)3+2M32 = (-1)3+2 x a11a23 - a13a21
Secara keseluruhan, definisi determinan ordo 3x3 adalah
-
- det(A) = a11C11+a12C12+a13C13
Contoh Soal:
-
- A = tentukan determinan A dengan metode Minor dan kofaktor
Jawab:
-
- c11 = (-1)1+1 = 1 (-3) = -3
- c12 = (-1)1+2 = -1 (-8) = 8
- c13 = (-1)1+3 = 1 (-7) = -7
-
- det(A) = 1 (-3) + 2 (8) + 3 (-7) = -8
Determinan dengan Ekspansi Kofaktor Pada Baris Pertama
Misalkan ada sebuah matriks A3x3
-
- A =
maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,
-
- det(A) = a11 - a12 + a13
-
- = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
- = a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32
-
- det(A) = a11 - a12 + a13
Contoh Soal:
-
- A = tentukan determinan A dengan metode ekspansi kofaktor baris pertama
Jawab:
-
- det(A) = = 1 - 2 + 3 = 1(-3) - 2(-8) + 3(-7) = -8
Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama
Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.
Misalkan ada sebuah matriks A3x3
-
- A =
maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,
-
- det(A) = a11 - a21 + a31
-
- = a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
- = a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32
-
- det(A) = a11 - a21 + a31
Contoh Soal:
-
- A = tentukan determinan A dengan metode ekspansi kofaktor kolom pertama
Jawab:
-
- det(A) = = 1 - 4 + 3 = 1(-3) - 4(-4) + 3(-7) = -8
Metode Sarrus
-
- A = tentukan determinan A
untuk mencari determinan matrik A maka,
-
- detA = (aei + bfg + cdh) - (bdi + afh + ceg)
Contoh Soal:
-
- A = tentukan determinan A dengan metode sarrus
Jawab:
-
- det(A) = = (1x5x1 + 2x4x3 + 3x4x2) - (3x5x3 + 2x4x1 + 1x4x2) = 53 - 61 = -8
Metode Operasi Baris Elementer
Terdapat tiga tipe Operasi Baris Elementer (OBE) dan beberapa sifat determinan matriks. Namun, hanya satu tipe OBE dan dua sifat determinan yang digunakan untuk menghitung determinan matriks.
Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka adalah hasil kali elemen diagonal utama matriks tersebut.
Contoh Soal:
-
- A = tentukan determinan A dengan metode OBE!
Jawab:
B2-4B1, B3-3B1
B3-4/3B2
Det(A) = 1x(-3)x(8/3) = -8